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The present study focuses on the solution of the incompressible
Navier-Stokes equations in general, non-separable domains, and
employs & Galerkin prpjection ol divargence-iree vector functions as
a trial basis. This basis is obtained from the solution of a generalized
constrained Stokes eigen-problem in the domain of interest. Faster
convergence can be achieved by constructing a singufar Stokes
eigen-problem in which the Stokes operator is modified to include a
variabie coefficient which vanishes at the domain boundaries. The con-
vergence properties of such functions are advaniageous in a least
squares sense and are shown to produce significantly better
appraximations to the solution of the Navier-Stokes equations in post-
critical states where unsteadiness characterizes the flowfield. Solutions
for the eigen-systems are efficiently accomplished using a combined
Lanczos-Uzawa algorithim and spectral element discretizations, Results
are presented for different simulations using these global spectral
trial basis on nen-separable and multiply-connected domains. It is
confirmed that faster convergence is oblained using the singular eigen-
expansions in approximating stationary Navier-Stokes solutions in
general domains. it is also shown that 100-mode expansions of time-
dependent solutions based on the singular Stokes eigenfunctions are
sufficient to accurately predict the dynamics of flows in such domains,
including Hopf bifurcations, intermittency, and details of flow
structures. € 1994 Academic Press, inc.

1. INTRODUCTION

The computational requirements to obtain numerical
solutions of the Navier-Slokes equations are well docu-
mented and are based either on physical scaling arguments
[17 or on more rigorous mathematical analysis [2,3].
Difficulties arise as the Reynolds nomber or the geometric
complexity increases and the required computer speed and
mernory greatly exceed the current parallel supercomputing
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capabilities. While the prospect of Teraflop processing
power within the next few years is a promising one, it has
become clear that simultancous advances in algorithms are
necessary to break what has been characterized  as
“deadlock™ in simulating turbulence in a realistic range of
Reynolds number and geometry [ 1]. The development of a
new numerical method for the incompressible Navier-
Stokes equations is the objective of this work. It is based on
new exfensions 1o existing spectral methods and exploits the
modern computational capabilities available today.

There 15 currently a breoad consensus that high-order
methods are better suited for direct numerical simulation of
turbulence as they typically require a smaller number of grid
points for a given amount of scaling information as com-
pared to low-order methods, and correspondingly, in high-
accuracy simulations both computing as well as memory.
cost are significantly lower. This view is exemplified by the
use of pglobal spectral methods over the last two decades
almost exclusively in simulations of transition and tur-
bulence [4, 5]. The use of spectral methods also allows the
incorporation of recent concepts developed in dynamical
systems theory, [ 6], into modern numerical methods.

Work on spectral methods for the solution of the
Navier-Stokes equations has been concentrated around
approximations based on Fourier expansions or eigen-
functions of a one-dimensional singular Sturm-Liouville
operator [7]. These methods rely on the geomelric
separability and the construction of tensor product
representations in multi-dimensional domains. In non-
separable or multiply-connected domains the use of domain
decomposition has resulted in the construction of spectral
element methods [8-117 to handle geometric complexity;
these methods still employ tensor product representations
within each subdomain.
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The current study focuses on the construction of a global
basis set which is geometry-fitted to a given complex
geometry domain and exhibits fast convergence rates as in
spectral methods. To achieve this, the present study con-
siders an extension of singular Sturm-Liouville theory to
multi-dimensions and complex geometry domains. Since
solutions of the incompressible Navier-Stokes equations
are sought, the basis set must be complete in a Solobev
space of divergence-free vector functions. In this study, the
basis set is derived from a linear self-adjoint system of
partial differential equations coupled by a divergence-free
constraint, the generalized Stokes eigen-system [127]. The
solenoidal character of the eigenfunctions is advantageous
in solving the Navier—Stokes equations via Galerkin projec-
tions since incompressibility is automatically satisfied by the
expansion and therefore there is no need to solve a pressure
equation separately. The latter represents typically a large
part of the computation in simulations of incompressible
flows [13].

Methodologies of this nature have been implemented by
expansions in terms of empirical eigenfunctions {proper
orthogonal decomposition, POD, method) [14, 15] and
with one-dimensional eigenfunctions based on Jacobi
polynomials, [16], for simple geometries. The empirical
eigenfunctions are truly multi-dimensional, divergence-free,
and geometry-fitted, similar to the properties of the eigen-
function sought in this study. They are also optimal in the
L? averaged context with respect to the solutions of the
governing equations. However, their derivation is based on
a decomposition which requires a priori knowledge of the
flowfield solution and thus POD methods cannot be used as
truly predictive tools.

The eigenfunctions derived in this work are solutions of
the generalized Stokes operator in a given computational
domain. Their completeness and orthogonality is guaran-
teed since they are solutions of a linear self-adjoint system of
partial differential equations. Two sets of eigenfunctions are
considered in this work: First, eigenfunctions of the linear
term of the Navier—Stokes equations, the Stokes eigenfunc-
tions, are derived and evaluated for their ability to solve the
Navier—Stokes equations. Their convergence properties
are studied in the least squares sense when used in
N-dimensional series expansions. It is shown that when used
to solve the Navier—Stokes equations their convergence rate
is bounded by O(N ~*?) in a D-dimensional space R”. It is
also shown that the Stokes eigenfunctions can yield less
than 0.1% error when less than 100 eigenfunctions are
employed to solve the Stokes equations. However, substan-
tial errors result when solving the Navier-Stokes equations,
especialiy in the high Reynolds number regime. Second,
eigenfunctions of the singular Stokes operator are derived.
In this case, the Stokes eigen-problem is modified to include
a variable coeflicient in the Laplacian operator, which
vanishes at the boundaries and produces eigenfunctions
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that could yield exponential convergence rates in approxi-
mations of smooth solutions. This formulation leads to
better approximations to the solutions of the Navier-Stokes
equations for stationary as well as unsteady solutions when
compared to the regular Stokes eigenfunctions.

The paper is organized as follows: The formulation and
analysis of the generalized Stokes operator is presented in
Section 2, along with a presentation of the numerical
methods used to solve the eigen-system. The method of
inverse orthogonal iteration is used and is found to yield
accurate results for a block of the lowest eigenpairs.
However, the convergence of this approach is acceptable
only if a handful of eigenfunctions are needed. A Lanczos
iteration procedure is also implemented, which for large
subspaces was found to be the most effective procedure. The
discretization of the differential operators is performed by
the spectral element method while the imposition of the
incompressibility constraint is imposed by a modified
Uzawa scheme [17]. The inversion of the matrices, typi-
cally of dimension of several thousands, is performed by a
mixed preconditioned conjugate gradient/static condensa-
tion technique. In Section 3, the Stokes eigen-system is
examined in more detail and results are presented for the
various geometries studied. In Section 4, a singular Stokes
eigen-system is examined. The construction and con-
vergence properties of the singular operator are discussed
and results are presented for the various domains and
operators considered. In Section 5 the computational com-
plexity of obtaining several hundred eigenfunctions is
analyzed. In Section 6, the Stokes and singular Stokes
eigen-systems are used in a least squares projection of solu-
tions of the Navier—Stokes equations. In Section 7, Galerkin
projections of the Navier-Stokes equations are presented
for stationary and time dependent solutions. The eigen-
expansions are examined for their ability to solve the
Navier-Stokes equations with ©O(10%) eigenfunctions.
Finally, a summary of the work and a discussion of future
developments of the proposed method are addressed in
Section 8.

2. CONSTRAINED GENERALIZED EIGEN-SYSTEM

2.1. Formulation

The present study focuses on the solution of the incom-
pressible Navier-Stokes equations in general, non-separable
domains and employs a Galerkin projection of divergence-
free vector functions as a trial basis. This basis is obtained
from the solution of the following generalized constrained
self-adjoint eigen-problem (EP):

—VII+V - [p(x)Vw] +g(x)w=/w in Q (la)
V-w=0 in (1b)
Bw=0 ondQ2, (lc)
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where we H is a global spectral basis, H) is a Sobolev
space of divergence-free vector functions, # is a linear
boundary operator, and p(x)>0 in the interior of
the domain Q; p{(x)e C' and may vanish on the domain
boundary 8£2. The boundary operator & can, in general,
enforce any boundary condition suitable for eigenproblems:
homogeneous Robin, Neumann, Dirichlet, periodic, or
mixed. This study focuses on the mixed Dirichlet and
periodic cases since these boundary conditions lead to the
elimination of the pressure gradient of the Navier-Stokes
equations when divergence-free projections are performed
onto them. The scalar fI{x) is an auxiliary quantity used to
impose the solencidal constraint, Eq. (1b). The above eigen-
system is referred to as a generalized Stokes system because
in the case where [ p(x) =1, and g(x) = 0] it reduces to the
Stokes eigen-system.

The main results of Sturm-Liouville theory (g{x) < 0) for
ordinary differential equations, [18-20], carry over to the
above system since the coupling is only present through the
scalar function f7(x). Theoretical studies on the spectrum of
this class of operators have been carried out by Métivier
[21]. The completeness and orthogonality of the eigenfunc-
tions are guaranteed through the self-adjointness of the
operator and boundary conditions, Constantin and Foias
[22] give a thorough discussion of the Stokes system and
present proofs on regularity and completeness. The theory
of single symmetric differential operators given by the form
of (la) 15 discussed in detail in Giarding [23] and
Strauss [24].

In this work we seek numerical solutions of EP in general
complex computational domains with a high degree of
accuracy. To obtain accurate solutions we will use a
high-order spatial discretization method along with an
appropriate technique to enforce the divergence-free
constraint, Eq. (1b). More specifically a spectral element
discretization in space, (Patera [8], Maday and Patera
[257), along with the modified Uzawa algorithm, Rgnquist
[ 171, is used. Finally, an efficient eigen-solver must be used
to obtain a specified subspace of the leading several hundred
eigensolutions,

2.2. Numerical Methods

Consider a domain discretized into general quadrilateral
spectral elements, as shown in (Fig. 1). The corresponding
variational formulation of EP can be written in the general
algebraic form '

—Hw,+ Dl II=Biw,,
—D,w,=0

i=1,.,d

in §2.

in &2 (2a)
(2b)
Here H is the discrete analog of the operator

V-[p(x)V]+¢g(x) and is symmetric positive definite,
matrix B is the mass matrix, and DT is the transpose of the
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FIG. 1. Spectral element skeleton meshes for the three domains

studied: (a) channel domain consisting of 48 spectral efements; {b) grooved
channel domain consisting of 58 spectral ¢lements; (c) eddy-promoter
domain consisting of 88 spectral elements. Periodic boundary conditions
are imposed in the streamwise x-direction.

discrete gradient operator. Next, we apply a variant of the
Uzawa algorithm, [17], as

—SI=—D,H"'Blw, (3a)

—~Hw,=Biw,— DI, i=1,.,4 (3b)
where S=D,H ~'D] and is a positive semi-definite matrix.
In the case of the Stokes system the matrix S is well condi-
tioned due to the product of the two first-order gradient
operators “divided” by the second-order Laplacian. The
embedded H ' makes S full and therefore an iterative
method is employed for its inversion. The pressure field is
solved for by a nested global inner static condensation/outer
conjugate gradient method. The corresponding matrix of
the Helmholtz operator H is inverted by a direct solver
using static condensation. The pressure field is solved on a
Gauss Legendre mesh of order N—2 while the velocity
fields are solved on a Gauss-Lobatto Legendre mesh of
order N. The use of the two meshes deals effectively with the
problem of spurious pressure modes [26]. The use of the
outer conjugate solver on the pressure allows the divergence
of the velocity field to be directly enforced on the Gauss
Legendre mesh by the residual of the iterative solver.
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However, the level of divergence of the velocity field on the
Gauss-Lobatto Legendre mesh is subject to the discretiza-
tion error and not simply the residual of the pressure
inversion. For non-smooth domains the accuracy of the
solution could be degraded and lead to non-negligible
divergence errors. These issues will be addressed in a later
section,

To see more clearly that this formulation leads to
a generalized eigen-problem, system (3) is recast in the
following block matrix form for a two-dimensional case as

*H 0 :I Wl —l:B_S“ _SIZ :||:I1W|:|

0 —H]| w, -85 B—Su |[Aw,]
where

SysD?S“DjH“B, i=14,2 j=1,2 (4)

In this form, it can be seen that the pressure acts to decouple
the system and impose the incompressibility constraint. The
obtained eigenfunctions are orthogonal with respect to the
mass matrix B. Similar systems resulting from finite element
discretizations were treated in the work of Clifie er af. [27].

22.1. Inverse Orthogonal Iteration-Uzawa Method

Here the above block system is rewritten in an iterative
form that is appropriate for the inverse power method, ie.,

-H 0 ][WT‘*‘“}_ B-_Sll _SIZ WT
0 —H||wrtl] | =8, B—S,l| w7
a[37)
w3

where m is the iteration number and & is a normalized
velocity w”/liw”||. The above system is solved by
premultiplying the B~ and thus preserving the self-adjoint-
ness of the system and orthogonality of the eigenfunctions
with respect to the mass matrix B. We obtain

-H 0

ﬁm-{-lzﬁ—l
ey T

}WM+1=WM.

The generalized eigen-problem is thus reduced to the
standard form and, as will be shown below, no additional
inversions are needed. The inverse orthogonal iteration
algorithm can now be presented. In standard form we have

Hzm - Qm
Z"=Q"+'R,

where capital bold-faced letters indicate matices whose
columns are filled with the vector functions of the
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p-subspace, e.g, Q=09,,9,,..9,]. The vector function
QR decomposition on the n x p matrix Z™ was performed
by a modified Gram-Schmidt procedure.

In decoupled form we solve for z7" as follows.

ALGORITHM A.

S¢™=D,H~'Bq"
—Hzl'= —Di¢" + Bqy

Z"=Q"*'R, m=123,.,

where, initially, qf = #?. Here bold-faced symbols indicate
vector functions and subscript / represents the component
of the vector function.

2.2.2. Lanczos-Uzawa Method

The rate of convergence to a p-subspace of the eigen-
system can be enhanced by using the Lanczos iteration
method [287]. Rapid convergence is obtained for the first
few eigensolutions if the inverse of the matrix is employed in
the three term recurrence relation, i.e.,

qj+lﬁj=HF1qj_qjaj—qj—lﬁj—19 (5)

where A was defined above. Given a q ; from the previous
iteration we evaluate the matrix-vector product by solving
for u; from Hu 1, =4q,. The inversion is carried out in the same
fashion as described for the inverse iteration, Aigorithm A
above. Complete re-orthogonalization is performed at cach
iteration j; the algorithm is presented below:

ALGORITHM B.

4=",_1/B;_,
uj=ﬁ“1qj
L=%—4,15,
%;=q; B,

I =r,—4q,x
r=1;— qq; Br)),
B;=(x]Br)'”

k=4jJj-1,.,21,

whete r; is an initial guess and 8, = (rj Bry) '~

3. EIGENFUNCTIONS OF THE STOKES SYSTEM

The Stokes eigenfunctions have been used in several
mathematical studies of the Navier-Stokes equations
{Foias et al. [29], Constantin et al. [2], and Foias et al.
[307). The Stokes eigen-system is defined by the generalized
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Stokes system where p(x) =1 and g(x) = 0. Therefore EP is
reduced to

—VIIT+Viw=lw in 2 (6a)
V-w=0 in 2 {6b)
#Bw=0 on dQ. {6c)

It can be seen that the operator is self-adjoint and
that homogeneous or periodic boundary conditions will
yield a fully self-adjoint problem [22]. The function
being approximated is assumed to be square integrable,
solencidal, and either homogeneous or periodic at the
boundary. It can therefore be approximated by a series
expansion of the Stokes eigenfunctions

(7)

where the series is expanded in a hierarchy with respect to
the eigenvalues 4;, where 4, is the smallest eigenvalue, and
the coefficients are obtained from

(8)

a;={w, “)EJ;} W, -udx

Substituting Eq. (6a) into (8) and integrating by parts four
times (noting that the scalar [7{x) drops out due to Green’s
identity and that the eigenfunctions are homogeneous or
periodic), we arrive at

a;= —%[(wi, V“u)gjg [Vu-(n-Vw)] ds}. (%

In order to achieve convergence rates higher than O(1/A?)
the boundary term in Eq. {9) must vanish and therefore the
Laplacian of the velocity field must go to zero on the
domain boundary #2. By examining the Navier-Stokes
equations we find that for a nonzero flow around a surface
the Laplacian cannot vanish on the surface and therefore
the surface integral will not vanish. In the special case of
periodic boundary conditions in every direction exponential
convergence can, of course, be recovered. Thus, for non-
periodic domains the best rate of convergence that can be
obtained, in the L? least squares context, is given by
O(1/A%). Given the estimate on the scaling of the spectrum
as A, ~O(n¥?) in a D-dimensional space R?, [22], an
upper bound for the convergence rate for the Stokes eigen-
function expansion is

O(n—*"), {10)

In two dimensions (D =2) the upper bound for the con-
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vergence rates of the velocity field is given by a,, ~ O(n=?%)
and shows quadratic convergence.

3.1. Analytical and Computational Results
3.1.1. Separable Domains

The eigenfunctions of the Stokes operator ¢an be solved
analytically for simple separable domains by a scalar and
vector potential decompositon as presented in Salwen et al.
[31]. Here the selution for a 2D plane channel domain with
one periodic direction, (Fig. 1a), is briefly summarized.

For even solutions of streamwise {(x-direction) velocity in
the y-direction,

cOs h )
u=(— (gy) | cos (ay)) e
COos & cosh «

(11a}

- (E sin(ay) _ sinh(ay) )) e (11b)

o cosa cosh «

where w=(u, v), « is the wave number in the x-direction,
and the eigenvalues are obtained from the relation

o coth(g) = a coth(a) (11c)
where
gr= —1-al

(11d)

For a =0 the cigenvalues are given by

2 1 \?
A:(’"; n), m=0,1,2,3 ...  (lle)
For odd solutions of streamwise velocity in the
y-direction,
u=( su?(ay)+sn?h(ay)) S (12a)
sin o sinh a
b= (_ 2 costoy) _ co-sh(“y)) e, (12b)
o sine sinh o
and the eigenvalues are obtained from the relation
atan{o) = —o tanh(a). {12c)
For o« = 0 the eigenvalues are given by
A=(mn)? m=1,23, ... (12d)

Noting the dependence of the eigenfunctions on i the
convergence rate estimates given in Section 3.1 can be
adjusted for the channel domain. For least squares projec-
tions of solenoidal velocity fields we obtain a, ~ O(n~*?).
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TABLE 1

Eigenvalues of the Channel Domain (Fig. 1a})

BATCHO AND KARNIADAKIS

TABLE II
Figenvalues of the Grooved Channel Domain (Fig. 1b)

i A; computed Residual

1 2467401100272 4.05x 10—
2 9.313740164676 9.43x10°1°
3 9.313740164690 976 x 10~
4 9.869604401090 9.28 x 107

Computations have been performed for the four leading
eigensolutions for the channel domain using the inverse
orthogonal iteration-Uzawa algorithm, The computational
mesh for the spectral element discretization is shown in
Fig. (1a); an eleventh-order polynomial was used on the
Gauss—-Lobatto mesh for both the x- and y-directions for
each element in the spectral element discretization. The
channel results are shown in Table I, where the residual is
defined as the L2 norm of Eq. (6a) and reflects the level of
the divergence of the solution. The first (m = 0) eigenvalue
has an exact solution of n?/4 and the computed value differs
by O(107'%); the fourth eigenvalue differs from the exact
solution, 72, by O{10~7). The loss of accuracy of the fourth
etgenvalue is due to the nonzero auxiliary scalar f7(x) of
modes two and three and their induced errors. The parallel
flow modes all have exact solutions where the auxiliary
scalar JI{x) is identically zero. The second and third modes

i A;computed Residual

1 2.1378710 248 x 103
2 4.5282150 133x 10+
3 6.9162780 323x 1074
4 7.5417144 1.59 x 104

correspond to the real and imaginary part of a single wave
in the x-direction, f{ )} e™* and have the same eigenvalue;
the third has a phase shift of #/2 in the x-direction relative
to the second. The computation indicates a difference
between the second and third eigenvalue in the eleventh
decimal place.

3.1.2.. Complex Domains

The grooved channel domain shown in Fig. 1b is con-
sidered first. Computations have been performed for the
four leading eigensolutions using the inverse orthogonal
iteration-Uzawa algorithm. The computational mesh for
the spectral element discretization is given in Fig, 1b; an
eleventh-order polynomial was used on the Gauss-Lobatto
mesh for both the x- and y-directions for each spectral ele-
ment. The leading four eigenvalues for the grooved channel
domain are given in Table IT and the corresponding vector

FIG. 2. Velocity vector plots of the first four Stokes eigenfunctions for the grooved channel domain. A 13th-order Gauss Lobatto-Legendre polyno-
mial was used in the spectral element discretization in both spatial directions. The first, second, third, and fourth eigenfunctions are plotted in (a), (b),

(c), and (d}, respectively.



GENERALIZED STOKES EIGENFUNCTIONS

eigenfunctions are plotted in Fig. 2. The residual is defined
as the L? norm of Eq. (6a) and reflects the level of the
divergence of the solution. The geometric singularities of the
grooved channe! domain prevent the solution accuracy
from reaching arbitrarily small levels,

The Lanczos-Uzawa algorithm was also used to con-
verge the first one hundred eigenvalues to sujtable smalil
tolerance levels. The spectrum of the grooved channel
domain using a spectrai element computation with a 13 x 13
polynomial in each element is presented in Fig. 3. The
change in the eigenvalues from an 11 x 11 to a 13 x 13 order
polynomial was O{10*), reflecting the level of divergence
in the solution. Since the one hundredth eigenfunction was
also converged to the same accuracy, with respect to the
lower resolution, as the first, it was assumed that the resolu-
tion was acceptable for all one hundred modes. The linear
distribution of the spectrum is consistent with the scaling
estimates presented above. In Fig. 4 representations of the
higher vector modes of the Stokes eigen-system for the
grooved channel domain are plotted. The divergence level
of the eigenfunctions were O{1077)— O(10~*) for all one
hundred modes.

Next the computed Stokes eigenfunctions in the multiply
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FIG. 3. The leading 100 eigenvalies for the Stokes eigen-system
computed in the grooved channel domain and the leading 150 Stokes
eigenvalues for the eddy-promoter domain,

FIG. 4, Velocity vector plots for eigenfunctions 10, 20, 30, 40, 50, and 60 for the Stokes eigen-system in the grooved channel domain are shown in
{a)-(f), respectively. A 13th-order Gauss Lobatto-Legendre polynomial was used in the spectrai element discretization in both spatial directions.
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FIG. 5. Velocity vector plots of the first four Stokes eigenfunctions for the eddy-promoter domain. A 13th-order Gauss Lobatto-Legendre polyno-
mial was used in the speciral element discretization in both spatial directions, The first, second, third, and fourth eigenfunctions are plotted in (a}—{d},
respectively. Velocity vector plots for eigenfunctions 10, 20, 30, and 40 are plotted in (e)-(h), respectively.

connected eddy-promoter domain (Fig. 1c) are presented.
This domain is smooth, Q2 e C™, so that arbitrarily small
divergence levels may be achieved through the algorithms
presented above. In Fig. 3 the associated eigenspectrum and
in Fig. 5 a representation of the vector eigenfunctions are
presented. These computations were performed with the
Lanczos-Uzawa algorithm using a thirteen-order polyno-
mial for both directional components in each of the 54
spectral elements. The divergence level for the first 25 eigen-
functions was O{10~°) and then it was gradually degraded
to a level of O(10—*) for the 60th eigenfunction. This was
due to relatively poor resolution of the higher modes. A
highly resoived mesh was then used with twice the number
of elements in the x- and y-directions. The divergence levels
for a 30th-order spectral element simulation on the high
resolution 88-element mesh was improved to levels of
O(10~7) for the 60th eigenfunction. The computed eigen-

values for both domains follow a linear scaling with respect
to the index of the eigenvalue and is in agreement with the
theoretical estimates presented in Section 3.1,

4. EIGENFUNCTIONS OF THE SINGULAR
STOKES SYSTEM

4.1. Convergence Properties

The discussions above have shown that the Stokes eigen-
functions yield less than optimal convergence rates in the
context of approximation theory. This problem can be
remedied by noting that the Laplacian operator with a
variable coefficient vanishing at the boundaries in such a
way that

0= lim B? P(X)[VPu-(n-Vw,)] ds] (13)
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(where the limit expresses the value of the integral as the
boundary 062 is approached) will yield eigenfunctions that
exhibit exponential convergence rates for smooth functions
{ue C*). For non-smooth vector functions the convergence
rates are dictated by the degree of smoothness of the func-
tion. Following the analysis given in Section 3.1 we arrive at
a,~ O(A;F), where p is the highest derivative for which
Eq. (13) holds. The operator from which the eigenfunctions
are derived is contained within the class covered by the
generalized Stokes system EP. The one-dimensional version
of the singular operator has been used in the analysis
of spectral polynomial approximations, Gottlieb. and
Orszag [7]; a recent review on the theory is given by
Hajmirzaahmad and Krail [32]. However, there has been
no attempt up to this point to study the applicability of the
two-dimensional version in complex domains. The lack of
analytical tools to deal with such domains is certainly
considered to be the main obstacle for such studies. In the
case of the constrained EP, exponential convergence can be
achieved only if J7(x) and its derivatives satisfy special
conditions.

4.2. Construction of Singular Systems

Due to the singular nature of the operator, the ability to
impose homogeneous Dirichlet boundary conditions is
expected to be compromised as in the one-dimensional
singular Sturm-Liouville operators [ 32]. The objective is
to construct a system that yields eigenfunctions which are
homogeneous at Dirichlet boundaries or have periodic
boundary conditions and exhibit exponential convergence
rates for smooth solutions. Such a system can be con-
structed by noting that the diagonal coefficient g{x) can be
used to control the limiting behavior of the eigenfunctions
near the boundaries. The variational form of the eigen-
problem states that IQ [g(x)w, - w,] dx must remain
bounded. One possible construction is to choose g(x)} such
that g{x)~ 1/4(x) near the boundaries so that the eigen-
functions are forced to approach zero where #{x) vanishes.
The scalar function (x) is chosen to be positive definite in
the interior of the domain and vanish at the Dirichlet
boundaries. The singular Stokes system is therefore defined
as

w .
—VH+V-[p(x)Vw]’ﬁ(x)=iw in 22 (14a)
V-w=0 in Q2 (14b)
Bw=0 ond.  (l4c)

The choice of §(x) is a crucial element of this construc-
tion. It is required that the rate at which g(x)}— 0 at the
boundary 9€2 be sufficiently rapid so that the integrability
(in the variational statement) of the diagonal term 1is
dictated by the homogeneity of the eigenfunction w. As a
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counterexample, the choice for a one-dimensional operator
where p='(x)=1/,/1 —x? yields the diagonal term
integrable without the need for w to approach zero; in this
case w must only be bounded since F~'(x) is itself
integrable.

The variable coefficients of the singular Stokes system
must be readily determined in general complex geometries
and Vp(x) must be square integrable. A suitable source for
the coefficients is to determine them as solutions of second-
order clliptic partial differential equations. The positive
definiteness of the scalar p(x) can be guarantced by the
minimum principle property of elliptic operators; in
addition, the operators can be easily inverted by standard
techniques. The Poisson equation with a negative definite
{constant) forcing is one possible choice,

Vip(x)=C<0
Bp(x) =0

in Q
on 682

{15a)
(15b)

For the domains studied in Fig. 1, p(x}e C®, for the
channel and eddy-promoter domains, (la) and (1b), and
p(x)e C' for the grooved channel domain, (1b). In this
study the choice of g(x) = —4/p(x) is examined for various
L” norms of p(x} defined from Eq. (15a), where Cis a con-
stant. The computed scalar functions, p(x), for the grooved
channel and eddy-promoter domains are plotted in Fig. 6.

E‘E

R
]

3

|—"]
¢
N \\\

\

L —

)
/

Iy

| —
| ——
L

1

-

-—

FIG. 6. The computed scalar function p(x} for the grooved channel
and eddy-promoter domains. The solution of a Poisson equation subject to
a constant negative forcing was used to generate p(x). The computation
is based on a spectral element discretization using a 13th-order Gauss
Lobatto—Legendre polynomial in both spatial directions.
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In the case of the channel domain this system reduces to the
associated Legendre functions, [18], for p{¥)=1— 3* for
ve[—-1,1];ie,

2

WP,
(p(¥) Pow) — 'h+AnPn.h=0’

16a
p(y) (16a)
where
drp
P,,,;,=p(y)"”—&y—,§, h=1,2,3, ... {160)

A proof of the existence and regularity of a complete set
of homogeneous ecigenfunctions for the singular Stokes
system is not presented here. However, the construction
suggested here is supported by the one-dimensional analog
of singular second-order operators (e.g., Sturm—Liouville).

4.3. Computational Results
4.3.1. Separable Domains

For the channel flow domain the natural choice for the
scalar p(x}is 1 — y* (noting that g(x) = —4/p(x)). For the
channel domain the first eigenfunction in the singular
Stokes eigen-system is a parabola and the set of parallel flow
modes are the associated Legendre functions of order two,
h=2and |p(x}|| ., = 1.0. The first eigenfunction is the exact
solution for stationary (laminar) flows, as compared to the
Stokes eigensystem where the first eigenfunction s a cosine
profile. The singular operator yields possible advantages
over the Stokes eigen-system since the eigenfunctions
appear to resemble the solution of the Navier-Stokes equa-
tions more closely in the wall region. The first few modes
look qualitatively similar to the Stokes eigenfunctions as
would be expected since they both must satisfy the same
hierarchy of scale information that forms a complete set.
The leading eigenfunction is computed to within an L=
error norm of 10 ® for the given computational resolution
(as in Section 3.2.1); see [ 12] for more details.

43.2. Complex Domains

The scalar function p(x), shown in Fig. 6 and computed
from Eq.{15a) is used for the solution of a singular
Stokes eigen-system in the grooved channel domain. The
eigenvalue spectra for the leading 100 modes with the
lptx)l . =1.0, 1.5, and 2.0 are¢ presented in Fig. 7, along
with the Stokes spectrum. In Fig. 8 the velocity vector plots
for the four leading modes and selected higher eigenfunc-
tions for the grooved channel domain are presented. The
modes were computed using the Lanczos—Uzawa method
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FIG. 7. The leading 100 eigenvalues for the singular Stokes eigen-
system are plotted for the grooved channel domain. The different points
correspond to ||p(x)],, =1.0, 1.5, and 2.0. The spectrum for the Stokes
eigen-system is also included for comparison,

with a [p(x}|.=1.5. The [[p(x)]|., =15 condition was
chosen since it gave a first mode that is nearly optimal
for the Stokes flow in an L? context with respect to the
lp(x}] ., parameter. The divergence level for the computed
eigenfunctions were O(10~?— 10~?), roughly an order of
magnitude larger than the Stokes cigen-system. The
cigenvalue spectrum for the leading 150 modes for the
eddy-promoter domain are shown in Fig. 9.

For both the grooved channel and eddy-promoter
domains the qualitative features of the leading modes
resemble the Stokes eigen-system with regard to the
hierarchy of scaling information. The higher modes begin to
deviate from the Stokes eigen-system not by the number of
zeros but rather in their distribution. The singular property
of the operator tends to cluster zeros of the eigenfunctions
closer to the boundaries in the same way as one-dimen-
sional singular Sturm-Liouville polynomials do.

The computations presented above were performed using
the Lanczos-Uzawa method with a 13th-order polynomial
for the spectral element method. The computational resolu-
tion was found to be sufficient for the last mode presented
for both domains, as discussed above. The condition
number of the pressure matrix, S, was higher than the one
in the Stokes eigen-system; approximately three times more

FIG. 8. Velocity vector plots of the first four singular Stokes eigenfunctions for the grooved channel domain; here | p(x}|,, = 1.5. A 13th-order Gauss
Lobatto—Legendre polynomial was used in the spectral element discretization in both spatial directions. The first, second, third, and fourth eigenfunctions
are plotted in {a)—{d), respectively. Velocity vector plots for sigenfunctions 10, 20, 30, 40, 50, and 60 are plotted in (e)—{j}, respectively.
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FIG. 11. Coefficients of a least squares projection for the Stokes (a)

and singular Stokes (b) eigenfunctions based on the Navier—Stokes
flow (R=100) spectral element solution in the grooved channel
(p{x)| o = 2.0).

expansions were 3.4 x 107? and 1.2 x 1072 for the Stokes
and singular Stokes eigenfunction projections, respectively.

For both R =100 and 350 the L? error norm decays at
roughly the same rate with slight differences’ in the
magnitude, slightly less than 0.5% maximum pointwise
error for a 100 mode projection. There are noticeable dif-
ferences in the decay rates of the coefficients. The singular
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Stokes system demonstrates rapid decay of selected coef-

“ficients which is expected from the discussions presented in

Section 4.1, see Fig. 11. At this point, no conclusive state-
ment can be made on either expansion other than that the
magnitude of the L? error norm is O(10 —?) after 100 modes
for both sets. Different [ p(x)|| .. had little effect on the error
norms of the projections. The value ([p(x}f , = 1.5 gave the
lowest error norm for the singular systems defined above;
however, it did not produce significantly better results than
the Stokes eigen-system projection.

Eddy-Promoter Results. The L? level of divergence for
an accurate spectral element simulation of the Navier—
Stokes equations was 2.5 x 10 % for the R =100 solution
and 2.8 x 10~° for the R =350 solution for the 54 element
eddy-promoter domain. The solution at R =350 is unsteady,
whereas the R =100 is a stationary solution. The L* error
norm "and the coefficients for the L? projections of the
R =100 simulation onto the Stokes and singular Stokes
sets, {{p(x}| . = 1.3, folow a similar decay rate as that of the
grooved channel; see [ 12]. The divergence levels for the 150
mode expansions were 3.4 x 1075 and 4.7 x10~° for the
Stokes and singular Stokes eigenfunction projections,
respectively.

Again the R=350 projection has similar qualitative
results as that of the R =100 case for both the convergence
of the L? error norm and decay of the projection coefficients.
Reconstructions with 100 modes for the Stokes and singular
Stokes systems results in approximate solutions within 10 >
of the spectral clement solution. The divergence levels for
the 100 mode expansions were 5.4 x 1077 and 4.8 x 10 ~* for
the Stokes and singular Stokes eigenfunction projections,
respectively.

7. GALERKIN PROJECTIONS OF THE
NAVIER-STOKES EQUATIONS

7.1. Formulation

The governing equations for Newtonian fluids are the
incompressible Navier-Stokes equations written in conser-
vative form as

av

in £
ot

+V-(vw)=—Vp+yViv+f (17a)

V.v=0 in £, (17b)
where v is the velocity field (v(x, t)), p is the static pressure,
f is a given external body force, v is the kinematic viscosity
of the fluid. The solution of the above system is found by a
Galerkin projection subject to mixed homogeneous periodic
boundary conditions. A trial basis {w,(x)} and a set of test
functions {®,(x)}} are defined which are solenoidal (there-
fore satisfying the incompressibility constraint) and satisfy
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the boundary conditions. These sets define the projection
and are chosen to be the same as the trial basis due to
the orthogonality of the eigen-systems. The solution is
expanded in terms of the trial basis, ¥(x, 1}=3"  a,(¢)
w;(x), and the time dependent expansion coefficients are
solved for. The governing equations are projected onto the
set of test functions and the pressure is eliminated.

To deal with non-homogeneous boundary conditions a
boundary function, ¥, is assumed to exist, which can be
readily computed by solving the steady state Stokes equa-
tions, subject to the appropriate boundary conditions:

—Vr+vV¥=0 in {18a)
V.- ¥=0 in Q {18b}
BY =RBv on dQ. (18¢c)

The boundary function is divergence-free by construction
and is subtraced from the actual solution. The difference
between the velocity field and the boundary function, u=
v— ¥, is then solved for. This field is subject to new forcing
terms and the boundary conditions are homogeneous or
periodic,

%+u-Vu=—Vp+vV2u—F in2 {19a)
Vou=0 in £2 (19b)
Au=0 on 082, (19¢)

where F=u.- V¥ + ¥ . Vu+ ¥.V¥ -1

7.1.1. Projections and Expansions

Weak solutions of the Navier-Stokes equations, £ c R,
are obtained from

@H(v‘«, V®)+ (V. (w), D)

=, ®) VO®eH] (20)

for A~1?fe H, where

H={uel*()|V-v=0}
H{={VveL}Q)|V.-v=0,#v=00n0Q}
A D(A)cH—H, A=—PV?

and P is the orthogonal projection P: L?(Q29) — H. Periodic
boundary conditions are also contained in H  and solutions
are obtained by expanding the solution in terms of the trial
basis,

VX, 1) =a{1) Wi(x),

i=1,2,3,.,N, 21)
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where {w;(x)} and {®,(x)} are complete in F{ . By taking
the inner product of the governing equations with the test
functions we obtain a nonlinear system of ordinary differen-
tial equations for the time dependent coefficients of the
expansion. The use of solenoidal test functions removes the
pressure from the system through Green's identity,

| ®-vp=] V-@)p~| pm-d) @2

The system of N ordinary differential equations found by
retaining a N-term Galerkin projection is

da.

%:c}‘ja-—cf'j,ka‘,-a,‘—vcijaji-f,-ﬁ-a,-, (23)
where

e =W, V-(PwH+(w, V.(w,¥))  (24a)
€2 = (W, V- (wew))) (24b)
¢}, =(Vw, Vw) (24¢}
Si=(w, 1) (24d}
o,={w, ¥ .V¥) {24e)

In the case of d=2 the existence of sclutions has been
proven, and for the d =3 case the existence is known only
for finite time intervals [22]. In this study only solutions in
two-dimensional domains shown in Fig. 1 are considered.

This system can be solved by various solution methods
for ordinary differential equations. Here, the second-order
Crank—Nicolson method is employed for the linear operator
and a third-order Adams-Bashforth integration is used to
evaluate contributions from the quadratic non-linearity.

7.1.2. Treatment of the Nonlinear and Diffusion Terms

The treatment of the nonlinear term was found to be of
critical importance when projections are performed with
modes of small but measurable divergence errors, ie., of
order 10~? in L% The conservation form V - {vv) was found
to yield significantly more accurate results than the rota-
tional form vx(Vxv). The computed eigenfunctions are
calculated on a piecewise p-order polynomial mesh and
therefore the projections of the nonlinear term, Eq. (24b),
requires the integration of a (3p — 1)-degree polynomial.
This can be obtained accurately with a 2 p-order Gaussian
quadrature. The projection coefficients for the nonlinear
term have been calculated on a 3 p-order Gauss mesh and
differences of the order of 108 were found with respect to
the p-order Gauss Lobatto mesh for all 150° coefficients in
the 88-element eddy-promoter domain; similar results were
obtained for the 58-element grooved channel domain. Based
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on this result and the added cost of the interpolation for the
2 p mesh all projection coefficients were computed on the
p-order Gauss Lobatto mesh for the Navier—Stokes simula-
tions presented in Section 7.

Computation of the projection coeflicients for the
non-linear term is responsible for the largest percentage of
pre-processing time. There are N coefficients which must
be computed and stored in advance. The computational
complexity of evaluating the non-linear projection coef-
ficients can be significantly reduced by integrating by parts
and arriving at

C?,j,k=(wuv‘(wkw;‘]‘)= —(Vw,, (wkwj))- (25)

Evaluation of the non-linear coefficients is therefore reduced
to one computation of the gradient for each cigenfunction
and a series of inner product operations. A further reduction
in work can be found by making use of known symmetries
of the coeflicients. By defining a trilinear form

av.
blu, v, w)=f Uyt W, dX. (26)

0 ij

where the subscripts indicate vector index notation, and
noting that the vectors are divergence-free and have
homogeneous or periodic boundary conditions, we find that

blu, v, w)= —b(u, w, v)

b(m, v, v} =0,

(27a)
(27b)

In terms of the notation for the projection coefficients
presented above we find that
2 — 2

Cigk ™ —Chik

2
ciix=0

(28a)
(28b)

The total computational work required is N vector gradient
evaluations and 3(N > — N?) inner product evaluations. The
storage requirements are 3{N* — N?) as well.
Simplification procedures are also used to evaluate the
projection of the Laplacian by noting that
¢l ={(Vw, Vw,)=w Aw,, (29)
where A is the discrete Laplacian of the spectral element dis-
cretization. Noting the symmetry of the ¢} ; coefficients, we
find a total computational work of N matrix vector multi-
plications Aw,, where efficient sum factorization techniques
can be employed [ 7] and 3(N? 4+ N) inner product evalua-
tions. The storage requirements are 3(N?2 + N) as well,
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7.2. Stokes Flow Solutions

In this section the results of Galerkin solutions of the
Stokes equations are presented, Eq. (17a), where 8/6:'=0,
v.-Vv=0, and v = 1. For the Stokes equations the system of
ordinary differential equations, Eq. {23), reduces to

;4= fi (30)
where the boundary conditions for the grooved channel and
eddy-promoter domains are the no-shp conditions at the
rigid walls and periodicity at the inlet and outlet of the
channel regions. The eigenfunctions satisfy the imposed
boundary conditions and therefore ¥ is not pesent in the
formulation.

A Stokes flow was computed by the spectral element
method described in Section 2.2, where the forcing was
chosen to be a constant in the x-direction, f=(C,, 0). This
solution is considered to be an accurate solution so that
error norms based on it are presented. Convergence of the
L? error norm comparing the Stokes and singular Stokes
Galerkin solutions to the spectral element solution are
presented in Fig. 12 for the grooved channel domain. The L?
divergence level of the spectral element solution is
4.1 x 10~*, the solution with 100 Stokes eigenfunctions is
3.9 x 10 %, and the solution with 100 singular Stokes eigen-
functions is 1.0 x 10 =2, For the eddy-promoter domain the
convergence of the L error norm comparing the Stokes and
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FIG. 12. Convergence of the Galerkin solution of the Stokes equations
with the use of the Stokes and singular Stokes eigenfunctions for the
grooved channel domain are plotted here (|}g(x)| . = 2.0). The L? error
norm with respect to the Stokes flow computed by the spectral element
method is plotted.
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singular Stokes Galerkin solutions to the spectral element
solution slightly less than those for the grooved channel
with the same trends. The L? divergence level of the spectral
element solution is 1.4 x 10 =7 for the 88-element mesh, the
solution with 150 Stokes eigenfunctions is 1.4 x 107, and
the solution with 150 singular Stokes eigenfunctions is
7.5 x 107%. For more details see [12].

7.3. Navier-Stokes Solations
7.3.1. Stationary Solutions

The time independent weak solutions of the Navier-—
Stokes equations are considered,
WVy, VO)+ (V- (v¥), ®)=(f, ) Y®eH; (31)
for A ~'*f e H. Solutions are presented for various Reynolds
numbers for the grooved channel and eddy-promoter
domains. Results are presented for the Stokes and singular
Stokes eigen-systems described above and the distribution
of the energy spectrum, a?, for the various solutions are
presented. The solutions are obtained by a Newton-
Raphson iteration and by Eg.(23) until steady state
solutions are obtained.

Grooved Channel Results. The convergence in the
L? error norm for the Stokes and singular Stokes,
lp(x)] o, = 2.0, eigen-systems when compared to the spec-
tral element simulation at R =100 is presented in Fig. 13.
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FIG. 13. Convergence of the Galerkin solution of the Navier-Stokes
equations at R =100 for the Stokes and singular Stokes eigenfunctions in
the grooved channel domain {[jp{x)|l, =2.0). The L? error norm with
respect to the Navier-Stokes flow computed by the spectral element
method is plotted here.
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The singular Stokes system gives a fairly consistent decay
while the Stokes system tends to produce large fluctuations
in the error norm as the dimension of the system is
increased. The magnitude of the L? error norm is
approximately the same for both systems for an expansion
of 100 modes.

In Figs. 14a and 14b the profiles of the streamwise com-
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FIG. 14. Streamwise velocity profile at x = 1.3, slightly downstream of
the 31/2 corner nearest the inlet. The Galerkin solutions with the Stokes (a)
and singular Stokes (b} eigen-systems are presented and compared to the
spectral element solution (SEM) for the grooved channel.
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ponent of velocity are plotted at a x-location of 1.3 (just
after the 37/2 corner nearest the inlet) for the Stokes and
singular Stokes systems. The plots show the convergence to
the spectral element solution for both basis sets for expan-
sions of 30, 60, and 100 modes. The profile depicts a steep

SEM golution 1
100 Stokes sigenlunctions i
- 100 singular Stokea, [lo(x)|l.=2.0

| [ 1 L .
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| SEM soistion -

| --—- 100 Stokes eigenfunctions 4

100 singular Stokes, [lo(x)ll.=2.0~ ~ __

001 0
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(b)

FIG. 15. Vertical velocity profile for the R=100 soluticn in the
grooved channel: (a) x=1.3 (slightly downstream of the 3%/2 corner
nearest the inlet); (b) x = 3.1 (approximately at the core of the recirculation
zone in the groove). Results are presented for the 100-mode Stokes and
singular Stokes Galerkin projections and the SEM.
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gradient at the location of the shear layer following the
corner. Both basis sets appear to capture the profile shape
accurately to within an error of about 1 % with the Stokes
system giving the better results, In Fig. 15 the profiles of the
vertical component of velocity at the x-locations of 1.3 and
3.1 (approximately at the core of the recirculation zone in
the groove region) for a 100-mode Galerkin solution are
plotted. The Stokes eigen-system gives a poor approxima-
tion to the qualitative shape of the profile while the singular
Stokes system converges to a profile in good qualitative
agreement with the spectral element simulation. The ability
of the singular system to capture both components of
velocity is an interesting feature and illustrates the robust-
ness of the eigenfunctions of singular operators to capture
complicated profiles with relatively low dimensional expan-
sions. The coefficients of the Galerkin solution of the
Navier-Stokes equations for the R = 100 case are similar to
those presented in Section 6; however, here the singular
system gives rapid decay of selected coefficients while the
Stokes system exhibits a nearly flat distribution of energy
for the higher modes.

Eddy-Promoter Results. Convergence in the L* error
norm for the Stokes and singular Stokes eigenfunctions
(I p(x} o =1.3), when compared to the spectral element
simulation at K = 100, is presented in Fig. 16 for 150 modes
in the eddy-promoter domain. The qualitative results of the
L?error are similar to that of the grooved channel; however,
the eddy-promoter domain results in an error with a slightly
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FIG. 16. Convergence of the Galerkin solution of the Navier-Stokes
equations at R==100 for the Stokes and singular Stokes eigenfunctions in
the eddy-promoter domain (|[g(xi||l,, = 1.3). The £? error norm with
respect to the Navier—Stokes flow computed by the SEM is plotted here.
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FIG. 19. Vertical velocity profile at x=4.18 near the end of the
domain at x = 4.283 for the R =100 Galerkin and spectral element solu-
tions. The Galerkin solutions for the Stokes (a) and singular Stokes (b)
eigen-systems are presented and compared to the SEM for the eddy-
promoter domain.

Figure 20 presents the pointswise error associated with
Figs. 15a and 18 for the grooved channel and eddy-
promoter domains, respectively. The singular Stokes
solutions tend to cluster the zeros of the truncation error
closer to the wall and the magnitude of the error is less in the
near wall region relative to the Stokes eigenfunction projec-
tion. Note also the increased number of zero crossings of the
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singular Stokes error versus that of the Stokes error in
Fig. 20. This behavior illustrates the robust character of
basis sets that cluster zeros near the domain boundary, as
do the eigenfunctions of singular operators. Such clustering
of zeros can be linked to sets that closely minimize the L™
error norm in polynomial approximations to functions and
is expected to generally apply to the somewhat more
abstract basis sets discussed here.

7.3.2. Unsteady Solutions

Grooved Channel Results. The spectral element simula-
tion of flow that is subject to a constant forcing, f=(2v, 0),
in the grooved channel domain undergoes a transition to
unsteady flow at a Reynolds number between 260 and 270
for a 5 x5 simulation and has been reported te undergo
transition at a Reynolds number of approximately 300 for a
9 x 9 simulation [35]. In Table III the bifurcation Reynolds
number as a function of the number of modes retained for
the Galerkin solution with the Stokes and singular Stokes
{llp(x)| ., =2.0) eigen-systems are presented. The Stokes
system exhibits large fluctuations in the bifurcation point
with respect to the dimension of expansion while the
singular Stokes system tends to level off and approaches the
spectral element solution.

In Figs. 21 and 22 seclected snapshots of the unsteady
R =350 and 1000 simulations by the spectral element
method and 95-mode Stokes and singular Stokes
(lp{x)]l o, =2.0) eigenfunction projections are presented.
The R =350 solution is characterized by an oscillation
of the large recirculation flow in the groove region and
shedding of a smaller recirculating structure in the shear
layer region just after the 3n/2 corner nearest the inlet. The
singular Stokes snapshot was chosen so that the core of the
smaller recirculation structure was in approximately the
same location as the spectral element sclution snapshot.
The singular Stokes solution is in good agreement with the
qualitative shape of the outlet profile, large recirculation in
the groove region, and the size of the smaller recirculation
structure in the shear layer region. The Stokes eigenfunction
solution did not resolve the small recirculation structure in
the shear layer region and the qualitative agreement with
the outlet profile and shape of the larger recirculation in the
grooved region is less favorable; the selection of the
stapshot was taken with less precision due to the noticeable
error present.

The R = 1000 solution is characterized by a larger recir-
culation in the groove region, a more nonsymmetric outlet
profile, and the appearance of a separation region which
travels along the top wall. The singular Stokes snapshot was
chosen so that the top separation region was positioned in
approximately the same location as the snapshot of the
spectral element solution. The singular Stokes solution gives
good qualitative agreement with the outlet profile, the shape
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FIG. 20. The pointwise error relative to the spectral element solution for the vertical velocity profiles plotted in Figs. 15 and 18: (a} is a profile at
x= 1.3 for a 100-mode Galerkin selution in the grooved channel (R= 100} (b) is a profile at x = 1.9 for a 150-mode projection for the eddy-promoter

domain (R = 100).

of the large recirculation in the groove region, and the
appearance of the separation region that travels along
the top wall. The relative size of the error can be seen
in the groove region where noticeable oscillations in the
truncation error are present near the vertical wall closest to
the inlet. The Stokes eigenfunction solution gives poor
agreement as can be seen by the oscillations in the trunca-
tion error in the outlet profile; such oscillations are also
noticeable in the R = 350 solution.

Time history data for the streamwise component of the
velocity is plotted in Figs. 23 and 24 for the R =350 and
1000 simulations, respectively, at (x, ¥)=(1.063, 0.023) for
a 95-mode Galerkin solution of the Stokes and singular

TABLE III

Bifurcation Reynolds Number for the Grooved Channel Domain

N R, Stokes R, singular Stokes
60 180-200 360-370
70 200-220 450-500
80 100-150 270-280
90 — 230-240
a5 180-200 240-250
100 240-250

Stokes eigen-systems and at {x, y)=(1.069, 0.052) for a
5 x 5 spectral element solution. The slight change in location
has negligible effect on the data and higher-order spectral
clement simulations tend to lower the rms value for the fluc-
tuating component of the solution. The singular Stokes
solution gives good agreement with the rms value of the
fluctuating component and has less than 1% error in the
frequency of the oscillation at R =350. The Stokes system
gives poor comparison in frequency content and rms levels
of the fluctuations. The maximum velocity of the solutions
is approximately one. The R=1000 simulations give
periodic results for the spectral element simulation and
singular Stokes projection while the Stokes eigenfunction
projection gave a more distorted aperiodic result. The
higher harmonics tend to be more pronounced in the
singular Stokes projection; this is most likely due to the
larger error present with respect to the spectral element
solution.

The convergence to the correct dynamical result is clearly
lulstrated by a lower dimensional projection. In Fig. 25 the
first coefficient time history is plotted for a 30-mode singular
Stokes Galerkin solution of the Navier—Stokes equations
{ R =1000) in the grooved channel domain. The time history
indicates an erronecus chaotic signal with intermittent
structure.
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(a)

(b}

FIG. 21.

Velocity vector plots for selected snapshots at R =350: (a)
spectral element sclution; (b) 95 Stokes eigenfunctions; {¢) 95 singular
Stokes eigenfunctions.

Eddy-Promoter Results, The spectral element simula-
tions of flow subject to a constant forcing, f = (2v, 0}, in the
eddy-promoter domain undergoes a transition to unsteady
flow at a Reynelds number between 330 and 350 fora 9 x9
simulation with a 88-element mesh. In Table IV the bifurca-
tion Reynolds number for various Galerkin solutions with
the Stokes and singular Stokes (|lp(x)| . =1.3) ecigen-
systems ar¢ presented. The prediction of the bifurcation
point with the Stokes eigen-system tends to fluctuate and
then levels off, exhibiting slow convergence, at approxi-
mately a 100-mode projection. The predicted critical
Reynolds number is significantly below the accurate
spectral element solution. The singular Stokes solution
shows less fluctuation in the bifurcation point and levels off
to a Reynolds number much closer to the accurate solution.
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FIG. 22. Velocity vector plots for selected snapshots at R =1000: (a)
spectral element solution, (b) 95 Stokes eigenfunctions; (¢) 95 singular
Stokes eigenfunctions.

In Figs. 26 and 28 selected snapshots of the unsteady
R=450 and 1000 simulations by the spectral element
method and 1530-mode Stokes and singular Stokes
(| p(x)l| - =1.3) eigenfunction projections are presented.
The R = 450 solution is characterized by a separation region
which travels along the floor of the domain and a modest
oscillation of the near wake region of the cylinder.
The singular Stokes snapshot was chosen so that the
separation region along the bottom wall was positioned in
approximately the same location as the spectral element
solution. The singular Stokes solution captures all the
qualitative features of the spectral element solution. The
detailed shape of the outlet profile 1s in good agreement with
the spectral element solution; however, there are slightly
larger oscillations in the near wake of the cylinder. The
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FIG. 23. Time history data near the shear layer region in the grooved
channel domain for a R =350, Streamwise velocity is plotted for the (a)
3% 5 spectral element solution; (b) 95 Stokes eigenfunctions; (c) 95
singular Stokes eigenfunctions.
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FIG. 24. Time history data near the shear layer region in the grooved
channel domain for a R=1000. Streamwise velocity is plotted for the (a)
S% 5 spectral element solution; (b) 95 Stokes cigenfunctions; (¢) 95
singular Stokes eigenfunctions.
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FIG. 25. Time history for the first coeflicient of a 30-mode singular
Stokes Galerkin solution of the Navier—Stokes equations (R = 1000) in the
grooved channel domain.

150-mode Galerkin solution with the Stokes eigen-system
gives poor qualitative agreement with the spectral element
solution at both the outlet profile and near wake region of
the cylinder and therefore the snapshot of the Stokes eigen-
system was chosen with less care. The qualitative feature of
the separation bubble traveling along the bottom wall is
present. However, the oscillations in the pointwise error are
large enough to be seen in the outlet profile and the width
of the near wake region is significantly underestimated by
the Stokes projection.

Time history data for the streamwise component of the
velocity is plotted in Fig. 27 for the R =450 simulations at
{x, v)=1(2.198, —0.2) for a 150-mode Galerkin solution of
the Stokes and singular Stokes eigen-systems and a 5x5
spectral element solution. A 9 x 9 spectral element simula-

TABLEIV

Bifurcation Reynolds Number for the Eddy-Promoter Domain

N R., Stokes R, singular Stokes
50 380-3%0 250-260
70 330-340 400410
50 270-280 400-410
110 170-180 330-340
130 170-180 400-410
140 — 400410
150 170-180 400-410
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conveluted evolution of the outlet profile is not resolved
adequately. The Stokes eigen-system solution fails to
capture the vortex shedding at the top of the cylinder and
the oscillations in the truncation error are again illustrated
in the outlet profile, see Fig. 28¢. The 150-mode Galerkin
projection with the singular Stokes eigen-system has
significant discrepancies with the spectral element solutions;
however, the essential evolutionary characteristics of vortex
shedding and bottom wall separation bubble are captured
as compared to the Stokes eigen-system which fails to
adequately resolve these features.

§. DISCUSSION

In this work, a new set of eigenfunctions based on a
modified (singular) Stokes operator was proposed for the
solution of the incompressible Navier-Stokes equations in
general complex computational domains. The corresponding
eigenproblem was formulated as a multi-dimensional
Sturm-Liouville problem, and efficient methods for com-
puting divergence-free, geometry-fitted vector eigenfunc-
tions were developed. Galerkin projections, defined by these
numerically obtained eigenfunctions, resulted in a simpler
system of ordinary differential equations with the pressure
eliminated. Several Navier—Stokes solutions were obtained
for a wide Reynolds number range and for three computa-
tional domains representing simple geometries (channel
flow), non-separable geometrics (grooved channel flow),
and multiply-connected geometries (eddy-promoter flow).
Although no systematic attempt was made to exploit the
fast resolution properties of the singular Stokes eigen-
functions, the accuracy in the Navier-Stokes solutions
obtained was substantial. For instance, the Stokes eigen-
system was shown to compute the Stokes equations subject
to a constant forcing to less than 0.1 % error with less than
100 degrees of freedom. The time-dependent Navier-Stokes
equations were computed to less than 1% error with less
than 100 degrees of freedom by employing the singular
Stokes eigen-system for Reynolds numbers close to the first
bifurcation to unsteady flow. For time dependent solutions
the projection of Navier—Stokes equations onto a simple
system of ordinary differential equations allows the use of
modern techniques in the analysis of dynamical systems
[36,37]. This in turn will allow more systematic studies
regarding low dimensionality of turbulent flow fields, the
existence of inertial manifolds, etc. [38].

A new conclusion derived from the current study is that
the Stokes cigen-system, although useful in theoretical
studies, does not produce a well-suited basis set to solve the
Navier-Stokes equations. The use of singular operators
leads to eigenfunctions with zeros clustered at the domain
boundaries. It was demonstrated that these eigenfunctions
constitute a more robust basis set for the solution of the
Navier-Stokes equations. The coefficient that makes the
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Stokes operator singular was chosen somewhat arbitrarily
here. The results presented here demonstrate that higher
convergence rates can be achieved if this coefficient is
chosen properly. This freedom in constructing oprimal EP
operators is an obvious advantage of the methodology
developed here and intelligent choices are expected to yield
substantially better results than the 1% error estimates
presented here; such a study is the focus of current research.

The exact definition of “What is an optimal EP
operator?” is somewhat of an open question. A discussion of
possible definitions and methods for constructing such
operators is given in [ 12]. Clearly, the choice of the scalar
p(x) offers many possibilities as the only constraint is that
it should vanish at the domain boundary and not change
sign in the domain interior. The choice of computing p(x)
from an elliptic equation as adopted here 1s arbitrary and is
based on computational convenience. For instance, an
operator-can be constructed which has as its first eigenfunc-
tion an approximation to a solution of the Navier-Stokes
equations. The unstable stationary or time-averaged solu-
tions of the Navier-Stokes equations could be incorporated
into the first mode of the EP operator. By incorporating the
most energetic scales in the first eigenmode, such as the
large gradients in the near wake of the cylinder for the eddy-
promoter domain, the remaining members of the basis set
are not used to capture these features but rather the
evolutionary character of the solution in a hierarchical
manner.

A more physically-based approach in constructing an
optimal operator may be developed by drawing the analogy
with the methedology used in turbulence modeling, e.g., the
large eddy simulation approach [39]. The singularity
coefficient p(x) can play the role of an eddy-viscosity
appropriately normalized which vanishes at wall boun-
daries. The operator construction is then formulated to
input the influence of the highest modes of a given expan-
sion into a low dimensional set of the leading eigenfunctions
of another operator, see [12] for a channel domain
example. The use of the eigenfunctions of an EP operator
with an eddy wviscosity in the Laplacian would be an
interesting study for high Reynolds number projections. An
interesting twist on past efforts is that the Navier-Stokes
equations would be solved at high Reynolds numbers, sub-
ject to a truncation error, whereas past efforts in turbulence
modeling solved a governing equation which is not a
Navier-Stokes equation. If such operators prove effective,
then the combined use of eddy viscosity and enforcement of
the first mode could be a powerful and promising tool in
high Reynelds number turbulence simulations.

In summary, we have presented here a dynamical numeri-
cal method for computing unsteady, incompressible flows.
It provides fast convergence for smooth solutions in
complex computational domains. [t can also produce low
dimensional systems if intelligent choices of the field p(x)
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are made or if the trial basis is enhanced appropriately with
the anticipated approximate eigenstructure of the flowfield.

S,
su

ACKNOWLEDGMENTS

We thank Professors I. G. Kevrekidis and S. A. Orszag for their useful
ggestions regarding this work. We also thank Dr, George Lea for
pporting this work under Contract ECS-9023362 of the National Science

Foundation. Supplementary support was provided by AFOSR under
contract F49620-94-1-0313. The computations were performed at the
Pittsburgh Supercomputing Center on the C90.

ro

REFERENCES

. G. E. Karniadakis and S. A, Orszag, Phys. Teday, March, 35 (1993).

. P. Constantin, C. Foias, O. P. Manley, and R. Temam, J. Fluid Mech.
150, 427 (1985).

. D. A, Jones and E. 5. Titi, J. Math. Anal. Appl. 168, 72 (1992),

4. L. Kleiser and T. A. Zang, Annw. Rev. Fluid Mech. 23 (1991).

. C. Canuto, M. Hussani, A. Quarteroni, and T. Zang, Spectral Methods
in Fluid Dynamics (Springer-Verlag, New York/Berlin, 1987}

. R. Temam, “New Emerging Methods in Numerical Analysis: Applica-
tions to Fluid Mechanics,” in Incompressible Compurational Fluid
Dynamices, edited by M. D. Gunzburger and R. A. Nicolaides
(Cambridge Univ. Press, Cambridge, 1993).

. D. Gottlieb and 5. A. Qrszag, Numerical Analysis of Spectral Methods:
Theory and Applications (SIAM, Philadelphia, 1977).

8. A.T. Patera, J. Comput. Phys. 54, 468 (1984).

L1
12,
13

. G. E. Kamiadakis, Appl. Numer. Math. 6, 85 (1989).

. D). Funaro, A, Quarteroni, and P. Zanolli, Technical Report 530,

Instituto di Analisi Numerica del Consiglio Nazionale delle Ricerche,

Pavia, 1985 {unpublished).

C. L. Street and M. G. Macaraeg, Appl. Numer. Magh. 6, 123 (1989),

P. F. Batcho, Ph.D. thesis, Princeton University, 1993 (unpublished).

M. D. Gunzburger and R. A. Nicolaides, fncompressible Computational

Fluid Dynamics {Cambridge Univ. Press, Cambridge, 1993).

. L. Sirovich, Q. Appl. Math. 45, 561 (1987).

. G. Berkooz, P, Holmes, and JI. L. Lumley, Anmu. Rev. Fluid Mech. 25,
539 {1993}

. A. Leonard and A. Wray, in Proceedings, International Conference on
Numericals in Fluid Dynamics, 8th, Aachen, Lecture Notes in Physics,
Vol. 170, edited by E. Krause (Springer-Verlag, New York, 1982},
p- 335

17.

18.

29.
30.

31,

32

BATCHO AND KARNIADAKIS

E. M. Renquist, Ph, D. thesis, Massachusetts Institute of Technology,
1988 (unpublished).

R. Courant and D. Hilbert, Methods of Mathematica! Physics, Vol !
(Wiley, New York, 1937).

. K. Yosida. Lectures on Differeniial and Integral Equations (Dover,

New York; Interscience, New York, 1960).

. H. Sagan, Boundary and Eigenvalue Problems in Mathematical Physics

(Dover, New York, 1961).

. G. Métivier, J, Math Pures Appl. 57 [ 1978),
. P. Constantin and C. Foias, Navier-Stokes Equations, Chicago

Lectures in Mathematics (Univ. of Chicago Press, Chicago, 1988).

. L. Girding. “Eigenfunction Expansions,” in Parrial Differensial

Equations, Lectures in Applied Mathematics, Vol. 3A, edited by
L. Bers, J. Fritz, and M. Schechter (Am. Math. Soc., Providence, RI,
1964), p. 303.

. H. Strauss, Partial Differential Equations; An Iniroduction (Wiley,

New York, 1992).

. Y. Maday and A. T. Patera, State of the Art Surveys in Computational

Mechanics, edited by A. Noor (Am. Soc. Mech. Eng., New York, 1987).

. C. Bernadi, Y. Maday, and B. Métivet, Numer. Math. 51, 655 (1987).
. K. A Cliffe, T. J. Garrat, and A. Spence, MAFLEP V1, edited by

L. Whiteman, (1991).

. B. L. Parlett, The Symmetric Eigenvalue Problem {Prentice Hall,

Englewood Cliffs, NJ, 1980).
C. Foias, O. Manley, and L. Sirovich, Phys. Fluids A 2 (3) (1990),

C. Foias, O. P. Manley, R. Temam, and Y. M. Treve, Physica D 9, 157
(1983).
H. Salwen, F. W. Cotton, and C. E. Grosch, J. Fluid Mech. 98, 273
{1980).

M. Hajmirzaahmad and A. M. Krall, Singwlar second order operators:
The maximal and minimal operators, and self-adjoint cperators in
between, STAM Rev. 34 (4), 614 (1992).

. W. E. Amoldi, Quart. Appl. Math. 9 (1), 17 (1951).
. G. E. Karniadakis, M., Israeli, and S. A. Orszag, J. Compur. Phys, 97,

414 (1991).

. A. E. Deane, I. G. Keverkidis, G. E. Karniadakis, and 5. A. Orszag,

Phys. Fluids A 3 (10), {1991).

. R. Temam, Proc. R. Soc. London A 434, 23 (1991).

. M. 8. Jolly, Physica D 63, 8 (1993),

. M. 8. Jolly, 1. G. Kevrekidis, and E. 8. Titi, Physica D 44, 38 (1990).
39.

B. Galperin and S. A. Orszag, Large Eddy Simulation of Complex
Engineering and Geophysical Flows (Cambridge Univ. Press,
Cambridge, 1993).



